Paul Christiano et Beth Barnes essaient de créer un IA avancé honnête et sûr

Les premiers arguments selon lesquels le «désalignement» de l’IA – lorsque les systèmes intelligents artificiels ne font pas ce que les humains leur demandent, ou ne parviennent pas à s’aligner sur les valeurs humaines – pourraient représenter un énorme risque pour l’humanité ont été émis par des philosophes et des autodidactes en marge de l’industrie de l’IA elle-même. Aujourd’hui, cependant, la principale entreprise d’IA au monde s’engage à consacrer un cinquième de ses ressources informatiques, estimées à des milliards de dollars, à la résolution de problèmes d’alignement. Que s’est-il passé? Comment les entreprises d’IA et la Maison Blanche ont-elles pris au sérieux les inquiétudes d’alignement de l’IA? Paul Christiano et Beth Barnes sont des personnages clés de l’histoire de la façon dont la sécurité de l’IA est devenue courante. Christiano écrit sur les techniques de prévention des catastrophes de l’IA depuis qu’il est étudiant de première année, et en tant que chercheur à OpenAI, il a dirigé le développement de ce qui est maintenant l’approche dominante pour prévenir un comportement flagrant des modèles linguistiques et autres: l’apprentissage par renforcement à partir de commentaires humains, ou RLHF. Dans cette approche, des êtres humains réels sont invités à évaluer les sorties de modèles tels que GPT-4, et leurs réponses sont utilisées pour ajuster le modèle afin que ses réponses s’alignent mieux sur les valeurs humaines. C’était une avancée, mais Christiano n’est pas complaisant, et il décrit souvent RLHF comme une simple approche de premier jet qui pourrait ne pas fonctionner à mesure que l’IA gagnera en puissance. Pour développer des méthodes qui pourraient fonctionner, il a quitté OpenAI pour fonder le Alignment Research Center (ARC). Là-bas, il poursuit une approche appelée «élaboration de connaissances latentes» (ELK), destinée à trouver des méthodes pour forcer les modèles IA à dire la vérité et à révéler tout ce qu’ils «savaient» sur une situation, même si elles pourraient normalement être incitées à mentir ou à cacher des informations.

Share the Post: