Les premiers arguments selon lesquels le «désalignement» de l’IA – lorsque les systèmes intelligents artificiels ne font pas ce que les humains leur demandent, ou ne parviennent pas à s’aligner sur des valeurs humaines – pourraient représenter un risque énorme pour l’humanité étaient émis par des philosophes et des autodidactes en marge de l’industrie de l’IA proprement dite. Aujourd’hui, cependant, la principale entreprise d’IA au monde s’engage à allouer un cinquième de ses ressources informatiques, estimées à des milliards de dollars, à la recherche d’un alignement. Que s’est-il passé? Comment les entreprises d’IA et la Maison Blanche ont-elles pris au sérieux les inquiétudes d’alignement de l’IA? Paul Christiano et Beth Barnes sont des personnages clés de l’histoire de la façon dont la sécurité de l’IA est devenue courante. Christiano écrit sur les techniques permettant d’éviter les catastrophes de l’IA depuis qu’il est étudiant de première année, et en tant que chercheur à OpenAI, il a dirigé le développement de ce qui est maintenant l’approche dominante pour prévenir un comportement flagrant de la part de modèles linguistiques et autres: l’apprentissage par renforcement à partir de commentaires humains, ou RLHF. Dans cette approche, des êtres humains réels sont invités à évaluer les sorties de modèles tels que GPT-4, et leurs réponses sont utilisées pour affiner le modèle afin que ses réponses s’alignent davantage sur les valeurs humaines. C’était une avancée, mais Christiano n’est pas complaisant, et décrit souvent le RLHF comme une simple première approche qui pourrait ne pas fonctionner à mesure que l’IA devient plus puissante. Pour développer des méthodes qui pourraient fonctionner, il a quitté OpenAI pour fonder le Alignment Research Center (ARC). Là-bas, il poursuit une approche appelée «éveil de la connaissance latente» (ELK), destinée à trouver des méthodes pour forcer les modèles d’IA à dire la vérité et à révéler tout ce qu’ils «savent» sur une situation, même si elles pourraient normalement être incitées à mentir ou à cacher des informations.
Équilibrer la Numérisation et la Sobriété Numérique dans la Formation Professionnelle : Solutions Actuelles et Besoins Émergents
La formation professionnelle tout au long de la vie (FTLV) connaît une transformation significative dans le contexte actuel de numérisation