Les images comme celles de Google Street View prennent une nouvelle importance entre les mains du professeur assistant d’intelligence artificielle de l’université de Floride Chaofeng Wang. Il les utilise, ainsi que l’apprentissage profond, dans un projet de recherche visant à automatiser l’évaluation des bâtiments urbains. Le projet vise à aider les gouvernements à atténuer les dégâts causés par les catastrophes naturelles en fournissant les informations nécessaires aux décideurs pour renforcer les structures de bâtiment ou effectuer une récupération post-catastrophe. Après une catastrophe naturelle comme un tremblement de terre, les gouvernements locaux envoient des équipes pour vérifier et évaluer les conditions des bâtiments. Fait manuellement, cela peut prendre jusqu’à des mois pour passer en revue l’ensemble du stock d’une ville. Le projet de Wang utilise l’IA pour accélérer le processus d’évaluation – réduisant ainsi le temps nécessaire à quelques heures. Le modèle IA est entraîné à l’aide d’images provenant de Google Street View et de gouvernements locaux pour attribuer des scores aux bâtiments en fonction des normes FEMA P-154, qui fournissent des lignes directrices d’évaluation basées sur des facteurs tels que le matériau des murs, le type de structure, l’âge du bâtiment, etc. Wang a également collaboré avec le programme mondial de la Banque mondiale pour le logement résistant aux catastrophes naturelles pour collecter des images et effectuer des annotations, qui ont été utilisées pour améliorer le modèle. Les images collectées sont placées dans un dépôt de données. Le modèle IA lit le dépôt et effectue une inférence sur les images – un processus accéléré par les systèmes NVIDIA DGX A100.
Équilibrer la Numérisation et la Sobriété Numérique dans la Formation Professionnelle : Solutions Actuelles et Besoins Émergents
La formation professionnelle tout au long de la vie (FTLV) connaît une transformation significative dans le contexte actuel de numérisation