Les images comme celles de Google Street View prennent une nouvelle signification entre les mains du professeur assistant d’intelligence artificielle Chaofeng Wang de l’université de Floride. Il s’en sert, avec l’apprentissage profond, dans un projet de recherche visant à automatiser l’évaluation des bâtiments urbains. Le projet vise à aider les gouvernements à atténuer les dégâts causés par les catastrophes naturelles en fournissant les données nécessaires aux décideurs pour renforcer les structures des bâtiments ou effectuer une récupération post-catastrophe. Après une catastrophe naturelle telle qu’un tremblement de terre, les gouvernements locaux envoient des équipes pour vérifier et évaluer les conditions des bâtiments. Fait manuellement, il peut prendre jusqu’à des mois pour parcourir l’ensemble du stock d’une ville. Le projet de Wang utilise l’IA pour accélérer le processus d’évaluation, réduisant ainsi le temps nécessaire à quelques heures. Le modèle IA est entraîné à l’aide d’images provenant de Google Street View et de gouvernements locaux pour attribuer des scores aux bâtiments en fonction des normes FEMA P-154, qui fournissent des lignes directrices d’évaluation basées sur des facteurs tels que le matériau des murs, le type de structure, l’âge du bâtiment, etc. Wang a également collaboré avec le Programme mondial de logements résilients de la Banque mondiale pour collecter des images et effectuer des annotations, qui ont été utilisées pour améliorer le modèle. Les images collectées sont placées dans un dépôt de données. Le modèle IA lit le dépôt et effectue une inférence sur les images, un processus accéléré par les systèmes NVIDIA DGX A100.
« Les livres de Penguin Random House disent maintenant explicitement ‘non’ à la formation IA »
‘Écrit par Emma Roth, dont le portfolio couvre aussi bien les percées technologiques grand public, les dynamiques de l’industrie du