Paul Christiano et Beth Barnes essaient de rendre l’IA avancée honnête et sûre.

Les premiers arguments selon lesquels le « désalignement » de l’IA – lorsque les systèmes intelligents artificiels ne font pas ce que les humains leur demandent, ou ne s’alignent pas sur les valeurs humaines – pourraient représenter un énorme risque pour l’humanité ont été émis par des philosophes et des autodidactes en marge de l’industrie de l’IA elle-même. Aujourd’hui, cependant, la plus grande entreprise d’IA au monde s’engage à allouer un cinquième de ses ressources informatiques, estimées à des milliards de dollars, à la résolution de problèmes d’alignement. Que s’est-il passé? Comment les entreprises d’IA et la Maison Blanche ont-elles pris au sérieux les inquiétudes concernant l’alignement de l’IA? Paul Christiano et Beth Barnes sont des personnages clés de l’histoire de la façon dont la sécurité de l’IA est devenue courante. Christiano écrit sur les techniques permettant d’éviter les catastrophes liées à l’IA depuis qu’il est étudiant, et en tant que chercheur à OpenAI, il a dirigé le développement de ce qui est maintenant l’approche dominante pour prévenir les comportements flagrants des modèles linguistiques et autres: l’apprentissage par renforcement à partir de feedbacks humains, ou RLHF. Dans cette approche, des êtres humains réels sont invités à évaluer les sorties de modèles tels que GPT-4, et leurs réponses sont utilisées pour ajuster finement le modèle afin que ses réponses s’alignent mieux sur les valeurs humaines. C’était une avancée, mais Christiano n’est pas complaisant, et décrit souvent RLHF comme une simple première approche qui pourrait ne pas fonctionner à mesure que l’IA deviendra plus puissante. Pour développer des méthodes qui pourraient fonctionner, il a quitté OpenAI pour fonder le Alignment Research Center (ARC). Là-bas, il poursuit une approche appelée « établissement de connaissances latentes » (ELK), destinée à trouver des méthodes pour forcer les modèles d’IA à dire la vérité et à révéler tout ce qu’ils « savent » sur une situation, même s’ils ont normalement des incitations à mentir ou à cacher des informations.

Share the Post: